Comment on "Molybdenum at high pressure and temperature: melting from another solid phase".
نویسندگان
چکیده
The Gibbs free energies of bcc and fcc Mo are calculated from first principles in the quasiharmonic approximation in the pressure range from 350 to 850 GPa at room temperatures up to 7500 K. It is found that Mo, stable in the bcc phase at low temperatures, has lower free energy in the fcc structure than in the bcc phase at elevated temperatures. Our density-functional-theory-based molecular dynamics simulations demonstrate that fcc melts at higher than bcc temperatures above 1.5 Mbar. Our calculated melting temperatures and bcc-fcc boundary are consistent with the Mo Hugoniot sound speed measurements. We find that melting occurs at temperatures significantly above the bcc-fcc boundary. This suggests an explanation of the recent diamond anvil cell experiments, which find a phase boundary in the vicinity of our extrapolated bcc-fcc boundary.
منابع مشابه
Microstructures define melting of molybdenum at high pressures
High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function o...
متن کاملAb initio melting curve of molybdenum by the phase coexistence method.
Ab initio calculations of the melting curve of molybdenum for the pressure range 0-400 GPa are reported. The calculations employ density functional theory (DFT) with the Perdew-Burke-Ernzerhof exchange-correlation functional in the projector augmented wave (PAW) implementation. Tests are presented showing that these techniques accurately reproduce experimental data on low-temperature body-cente...
متن کاملHigh-pressure--high-temperature polymorphism in ta: resolving an ongoing experimental controversy.
Phase diagrams of refractory metals remain essentially unknown. Moreover, there is an ongoing controversy over the high-pressure melting temperatures of these metals: results of diamond anvil cell (DAC) and shock wave experiments differ by at least a factor of 2. From an extensive ab initio study on tantalum we discovered that the body-centered cubic phase, its physical phase at ambient conditi...
متن کاملMelting curve and Hugoniot of molybdenum up to 400 GPa by ab initio simulations
We report ab initio calculations of the melting curve and Hugoniot of molybdenum for the pressure range 0 − 400 GPa, using density functional theory (DFT) in the projector augmented wave (PAW) implementation. We use the “reference coexistence” technique to overcome uncertainties inherent in earlier DFT calculations of the melting curve of Mo. Our calculated melting curve agrees well with experi...
متن کاملAnomalous melting behavior of solid hydrogen at high pressures
Hydrogen is the most abundant element in the universe, and its properties under conditions of high temperature and pressure are crucial to understand the interior of large gaseous planets and other astrophysical bodies. At ultra-high pressures solid hydrogen has been predicted to transform into a quantum fluid, because of its high zero-point motion. Here we report first-principles twophase coex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 101 4 شماره
صفحات -
تاریخ انتشار 2008